Multi-fidelity optimization via surrogate modelling
نویسندگان
چکیده
منابع مشابه
Multi-fidelity optimization via surrogate modelling
This paper demonstrates the application of correlated Gaussian process based approximations to optimization where multiple levels of analysis are available, using an extension to the geostatistical method of co-kriging. An exchange algorithm is used to choose which points of the search space to sample within each level of analysis. The derivation of the co-kriging equations is presented in an i...
متن کاملWing-body Optimization Based on Multi-fidelity Surrogate Model
This paper focuses upon the efficient surrogate model algorithm for expensive simulation-based design optimization problems. Co-kriging method is used to develop a multi-fidelity surrogate model using two independent datasets. To achieve this objective, wing-body problem is taken as an example of application for highdimensional complex design problem. In addition, a simple sampling analysis is ...
متن کاملSurrogate Modeling Based on Statistical Techniques for Multi - fidelity Optimization
Designing and optimizing complex systems generally requires the use of numerical models. However, it is often too expensive to evaluate these models at each step of an optimization problem. Instead surrogate models can be used to explore the design space, as they are much cheaper to evaluate. Constructing a surrogate becomes challenging when different numerical models are used to compute the sa...
متن کاملMulti-objective Geometry Optimization of a Gas Cyclone Using Triple-Fidelity Co-Kriging Surrogate Models
Cyclone separators are widely used in a variety of industrial applications. A low-mass loading gas cyclone is characterized by two performance parameters, namely the Euler and Stokes numbers. These parameters are highly sensitive to the geometrical design parameters defining the cyclone. Optimizing the cyclone geometry therefore is a complex problem. Testing a large number of cyclone geometries...
متن کاملA multi-fidelity surrogate-model-assisted evolutionary algorithm for computationally expensive optimization problems
Integrating data-driven surrogate models and simulation models of di erent accuracies (or delities) in a single algorithm to address computationally expensive global optimization problems has recently attracted considerable attention. However, handling discrepancies between simulation models with multiple delities in global optimization is a major challenge. To address it, the two major contrib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
سال: 2007
ISSN: 1364-5021,1471-2946
DOI: 10.1098/rspa.2007.1900